# SMALL TANK HERITAGE AND ITS CURRENT PROBLEMS

P.B. Dharmasena, Field Crops Research and Development Institute, Mahailluppallama  Symposium on 'Small tank settlements in Sri Lanka' held on 10<sup>th</sup> June 2004 at SLAAS organized by NASTEC

 Workshop on 'Integrating Wetland Economic Values into River Basing Management' held from 29<sup>th</sup> - 30<sup>th</sup> June 2004 at Nuwarawewa Rest, Anuradhapura, organized by IUCN

 Symposium on 'Small tank settlements in Sri Lanka' held on 21<sup>st</sup> August 2004 at HARTI organized by HARTI

 $\cdot$  Presentation made to SLANRM Project staff at Kurunegala on 7th October 2004

 Presentation made to PEACE Project staff at Anuradhapura on 13<sup>th</sup> October 2004



#### Most affected districts Kurunegala, Anuradhapura, Puttalam

- 67,398 farming families seriously affected
- Paddy production (2003/04 maha) dropped by 50 %
- Source: FAO (2004) Paddy production (2004 yala) – be reduced by 68 %
- Other field crops (rainfed) heavily damaged

#### **RESERVOIR LEVELS - DROPPED**

| District     | 2002/03 | 2003/04 |
|--------------|---------|---------|
| Anuradhapura | 87 %    | 34 %    |
| Kurunegala   | 97 %    | 26 %    |
| Hambatota    | 29 %    | 15 %    |
| Badulla      | 74 %    | 29 %    |
| Moneragala   | 71 %    | 21 %    |
| Puttalam     | 100 %   | 21 %    |





# Can we achieve rice production targets?

|                                       | 1990 | 2025 | 2025 |
|---------------------------------------|------|------|------|
| Population (million)                  | 17.2 | 24.9 | 24.9 |
| Rice production (mil. mt)             | 2.2  | 3.5  | 3.5  |
| Rice yield (t/ha)                     | 3.8  | 3.8  | 5    |
| Extent of irrigated farming (mil. ha) | 0.58 | 0.93 | 0.69 |
| Irrigation water requirement (m ha.m) | 0.86 | 1.38 | 0.86 |
| Irrigation effectiveness              | 37 % | 37 % | 45 % |
| Cropping intensity                    | 1.3  | 1.3  | 1.6  |

### Attitudinal change from land productivity to water productivity

# Water productivity

Yield: 70 bushels/acre Yaya extent: 70 acres Effective storage: 350 ac.ft Water use: 7 ac.ft (or 7 ft.) Cultivable extent: 50 acres Amount of paddy per one ac.ft.: 10 bushels Yaya production: 3,500 bushels Water use: 5 ac.ft. (5 ft.) Cultivable extent: 70 acres Amount of paddy per one ac.ft.: 14 bushels *Yaya* production: 4,900 bushels



## Rainfall and Cropping Intensity under Minor Tanks in Anuradhapura District (1970 - 2003)





Irrigated and rainfed farming in a vicious cycle

Rainfed farming

Soil erosion

Lowland farming

Tank sedimentation

Tank storage

## SPECIAL FEATURES OF TRADITIONAL FARMING

**Risk evasive farming Resources** conservation Sustainability Food security Water security **Bio-diversity** Equity Low environmental pollution





| Chena - the concept of mixed farming |                                 |                                         |  |
|--------------------------------------|---------------------------------|-----------------------------------------|--|
|                                      | Selection of lo                 | cation                                  |  |
|                                      | Sharing the la                  | Ind                                     |  |
|                                      | Clearing and burning            |                                         |  |
|                                      | Preparation of land and fencing |                                         |  |
|                                      | Selection of crops              |                                         |  |
|                                      | Protection of a                 | crops                                   |  |
| Type of chena                        | Soil condition                  | Crops                                   |  |
| Nawadeli hena                        | Highly fertile                  | Mustard, Blackgram, Mungbean, vegetable |  |
| Athdanduhena                         | Fertile                         | Blackgram, Mungbean, Vegetable, maize   |  |
| Landa, hirilanda                     | Moderately fertile              | Finger millet, gingelly                 |  |
| Kanathu, piti                        | Infertile                       | Gingelly, minor millet                  |  |
|                                      |                                 |                                         |  |

#### GASGOMMANA

- Upstream land strip inundated when spilling
- Large trees such as kumbuk, nabada, maila, damba
- Lianes and climbers kaila, elipaththa, katukeliya, kalawel, bokalawel etc.
- Not planted by villagers
- Floating seeds
- Gasgommana acts as a wind barrier
- Reduces water temperature
- Minimizes evaporation
- Breeding and living places of some fish species
- Territory between man and animals



#### PERAHANA

ISWETIYA

Meadow under g*asgommana* Sedimented flow is filtered

A conservation bund to prevent entering sediment (potawetiya)

GODAWALA

A manmade water hole to trap sediment Provides water to wild animals Evades man animal conflict

KULU WEWA

A tank constructed above large reservoirs Not for irrigation purpose

#### RELAPANAWA

TISBAMBE

KIUL ELA

A stone pave at the inner side to prevent dam scouring in medium and large reservoirs'

The fertile land strip around the hamlet A common property Tree species - *mee, mango, coconut etc.* Resting place of buffaloes For sanitary purposes Protection from wild animals To protect from malaria

Old natural stream Common drainage Tree species - *karanda, mee,* mat grass, *ikiri, vetakeya* Small fish species Removal of salt and iron polluted water

## KATTAKADUWA

Land strip between bund and paddy field Water hole, wetland and dry upland Diverse vegetation Prevents entering salts and Ferric ions to paddy fields Minimizes bund seepage Strengthens the bund stability with vetakeya The village garden Fuel wood, medicine, timber, materials for fencing, household and farm implements, food, fruits, vegetables etc. Row materials for cottage industries'





## Plant species in Kattakaduwa



## Species for cottage industries

| Plant<br>species | Products                                      |
|------------------|-----------------------------------------------|
| Indi             | Hats, bags, baskets                           |
| Vetakeya         | Bags, baskets, mats.                          |
| Bambo            | Wood carving, flower vase, building materials |
| Rattan           | Baskets, furniture                            |
| Palmaira         | Mats, bags, baskets, sweets, toddy            |
| Mat grass        | Mats, baskets etc.                            |
| Pata-beli        | Ropes, strings etc.                           |

### SOME ISSUES IN SMALL TANKS REHABILITATION

Over estimation of catchment yield Under estimation of tank water losses Raising spill to increase the capacity Planning for individual tanks Land availability - not considered Fragmentation of paddy lands New ponds above tanks Many agencies for tank rehabilitation (Irrigation Departments, Department of Agrarian Development, Projects, FFHC, Provincial Council etc.)



## Present issues in tank-village farming system

- Highly degraded tank catchments
- Silted tanks with high water losses
- Rehabilitation does not address the whole problem
- Individual component approach in development programmes (tank, command area, rainfed land, agrowells etc.)

## PRESENT STATUS OF SMALL TANKS

Very high tank water losses ) 50] Severe tank sedimentation 25]) 30] Destruction of the eco-system Low productivity of the paddy land Salt affected lands Loss of bio-diversity Poor water management Lack of proper planning No integrated planning with groundwater

# WHAT SHOULD BE DONE?

**Removal of sediment** Restoration of tank eco-system Water based cultivation planning Drainage improvement Enhancement of soil fertility in paddy fields Integrated water resources management approach Formulation of cultivation planning committees  Some strategies towards system sustainability

- Cascade approach
- Catchment conservation (land use, conservation farming, rainwater harvesting etc.)
- Partial desilting concept
- Restoration of tank ecosystem
- Integrated water resource management (IWRM) approach (water productivity concept)
- Diverse farming

#### Geometry of water body affects the loss





## PARTIAL DESILTING CONCEPT



## PARTIAL DESILTING CONCEPT



Elevation (m)

## 10 pillars of sustainability

Groundwater for water security Risk evading farming practices Exploit environment without destruction Simple life style with minimum requirements Rainwater harvesting and conservation Work as a group for protection from famine, pestilence, wild animals etc. Store food for future use 8. Less dependency on external support Indigenous wisdom for solving problems 0. Restful and peaceful mind and comfortable environment are the secret behind the success of a community

